

Al **DATACENTERS**

MEETING THE CHALLENGES OF DENSITY, HEAT, AND RELIABILITY IN THE AGE OF ARTIFICIAL INTELLIGENCE

GROWTH RATE

PRESSURE POINT

POWERING THE FUTURE IS TAXING THE GRID UNPRECEDENTED AI DEMAND IS STRAINING THE

GRID AND CHALLENGING THE LIMITS OF TODAY'S **INFRASTRUCTURE**

AI DATACENTER CHALLENGE

analytics, and data processing. But they come at a cost: by 2030, Al datacenters will add an estimated 50 GW of new load to the U.S. grid - more than double the historical growth rate. The scale and speed of this transformation is straining the nation's power infrastructure, with reliability now a top concern for operators, regulators, and national security

Al datacenters are the thrust of the digital revolution, powering generative Al, real-time

leaders. The Department of Energy warns: without decisive modernization, the risk of large-scale power outages could rise by 100x, putting generative AI and economic security at risk.

	Datacenter load rising 50GW by 2030	Individual rack loads now reach 10 kW to over 100 kW, pushing BOPP capacitors to overheat or fail during peaks, causing instability and outages.	
	Grid instability & voltage fluctuations	Mixed power sources create surges, sags, and phase shifts that BOPP capacitors struggle to regulate, exposing AI hardware to power disruptions.	
	Space & scalability constraints	Oversized BOPP banks don't fit in tight, modular data center designs, slowing deployment and blocking flexible layouts.	
	Thermal stress in high-power environments	Al workloads generate intense heat and force costly oversizing, active cooling, and frequent replacements to prevent failure, raising capital and operating costs.	
	High-frequency ripple & fast duty cycles	Rapid switching shortens the lifespan of BOPP capacitors, reducing reliability, especially during peak power events.	
	Short service life & high O&M costs	Frequent maintenance and replacement in always-on data centers drive up costs and increase the risk of downtime.	
Meeting these demands requires next-generation grid components that are compact, resilient, an			

KEEP AI ONLINE

CAPACITORS

engineered for continuous, high-performance operation.

FUNCTION

Voltage Stabilization &

Surge Protection

AI DATACENTERS DEPEND ON CAPACITORS TO DELIVER VOLTAGE REGULATION, REACTIVE POWER, AND HARMONIC FILTERING FOR 24/7

WORKLOADS.

Al datacenters depend on capacitors. They keep the power flowing smoothly, absorb sudden spikes, and protect mission-critical Al hardware from voltage fluctuations and grid instability. As Al workloads push power systems to new extremes, the quality and reliability of capacitor banks greatly influence datacenter uptime,

performance, and operational costs. **BENEFIT IN AI DATACENTERS**

sudden spikes, ensuring power quality and safety

Maintains steady voltage and shields critical equipment from

Energy Storage & Reactive Power Support	Absorbs peak loads, releases energy on demand, and maintains stable power factor for efficient AI operations			
Harmonic Filtering	Suppresses electrical noise and harmonics generated by fast- switching AI hardware, protecting servers and equipment			
System Scalability	Enables modular, flexible capacitor banks that grow with datacenter capacity and evolving workloads			
Reliability & Endurance	Ensures uptime by surviving relentless thermal cycling, rapid switching, and high-frequency electrical stress			
Maintaining reliability under extreme electrical and thermal stress from 24/7 Al workloads is a critical performance requirement. Capacitor banks must survive increasing temperatures, faster switching, and more frequent power surges to support the growth of Al.				

BOPP-BASED THE BOPP LIMITATIONS **BOTTLENECK UNDERCUT UPTIME**

resilience that next-gen datacenters require.

BOPP LIMITATIONS UNDERCUT UPTIME,

EFFICIENCY, AND DATACENTER SCALABILITY

BOPP-film capacitors derate under heat, requiring frequent

maintenance, planned downtime, and expensive oversizing that takes up space. For operators under pressure to scale, meet demand, control costs,

and guarantee uptime, BOPP is no longer a sustainable option. It is a bottleneck that limits growth, drains resources, and erodes the

Tight, modular layouts & limited space

24/7 operation, rapid switching & cycling

Unstable power sources & voltage events

AI DATACENTER CHALLENGE WHY BOPP FAILS

BOPP derates or fails above 85°C, Extreme rack-level power & thermal loads risking overheating, outages, and forced oversizing/cooling

BOPP banks are bulky, consuming floor

space, blocking scaling, and limiting

BOPP ages quickly, requiring frequent

BOPP struggles to stabilize voltage under

rapid surges, sags, or phase shifts, exposes

maintenance and driving up costs

flexible deployment

	Al hardware to risk				
Need for rapid deployment & modernization	BOPP is incompatible with new modular, high-density designs, slowing expansion and modernization				
Al datacenters demand advanced capacitors built to withstand relentless heat, nonstop cycling, and rapid load fluctuations without loss of stability or uptime.					
	NANOPLEX*				

THE PEAK

NANOPLEX DELIVERS

NANOPLEX

unit volume

retrofits

Operates reliably up to

No film shrinkage or

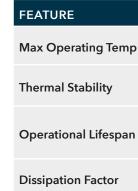
degradation at 135 °C

Up to **4x energy storage** per

50% smaller, 30% lighter

- ideal for tight spaces &

Plug-and-play with existing


135 °C without derating

empowers capacitor OEMs and grid operators to modernize.

WHERE BOPP CAN'T KEEP UP,

NanoPlex is a fundamentally new dielectric film platform, engineered to outperform conventional BOPP in every critical measure. Purpose-built for the demands of nextgeneration power systems, NanoPlex films unlock higher temperature operation, greater energy density, longer service life, and lower energy losses. With plug-and-play compatibility, U.S. based manufacturing, and an allied-secured supply-chain, NanoPlex

ADVANTAGE OF NANOPLEX CAPACITORS VS. BOPP CAPACITORS

Energy Density

Size & Weight

OPERATATES UP TO

LONGER

Up to 5x longer life under Shorter lifespan under substation continuous thermal & load duty cycles 50% lower energy losses; Higher losses, more heat generation reduced self-heating

BOPP

Up to 85 °C; derating required in

Shrinks/degrades under elevated

Lower density; requires more space

Bulky form factors limit installation

options in compact datacenters

for desired capacitance

high-heat conditions

temperatures

NANOPLEX™ ADVANTAGE

designs & equipment, Incompatible with modern **Design Compatibility** including metallization & datacenter upgrade paths winding 80% of BOPP film sourced overseas, 100% U.S. engineered and Manufacturing manufactured 70% from China 100% allied-sourced and Subject to geopolitical risk and **Supply Chain** geopolitically insulated sourcing delays

ENGINEERED TO

OUTPERFORM

confidently scale as workloads intensify.

INFRASTRUCTURE

70%

IS 25 YEARS OLD

NANOPLEX IS PURPOSE-BUILT FOR THE HEAT, PACE, AND DENSITY OF MODERN AI

Engineered for the relentless stress of today's high-

density, always-on environments, NanoPlex enables AI datacenters to maximize uptime, minimize cooling and maintenance costs, and

Saves Space Minimizes Downtime 135°C continuous no derate 4x energy density and 50% 5x service life under nonstop, operation eliminates costly smaller, 30% lighter designs rapid cycling, minimizes downtime & operating costs support modular, spaceconstrained datacenters

surges

Handles Extreme Heat

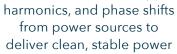
oversizing and cooling

Protects & Stabilizes 50% lower dissipation reduces loss and keeps voltage stable, protecting

Effortless Upgrade Drop-in compatible with

existing capacitor designs for

a no-retooling path to higher


Cleans Power

Low-ESR smooths out ripple,

performance sensitive hardware from deliver clean, stable power

Peak Nano Films, LLC

NanoPlex film powers the next generation of AI datacenters where rack density is soaring,

temperatures run high, and performance and reliability can never be compromised.

pnfsales@peaknano.com

www.peaknano.com

+1 216.264.4818

pe≈k